Problem Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting. * Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute * Teleporting: FJ can move from any point X to the point 2 × X in a single minute. If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4 讲解:一农夫追牛,牛很笨,他就在原地等着农夫来抓他,并且这是一条直线,农夫很容易就能找到它的,然而农夫却只有三种选择,退一步,走一步,或者走到当前位置的2倍;于是乎我们可以用搜索来解决;
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes. 代码如下:
1 #include2 #include 3 #include 4 #include 5 #include 6 using namespace std; 7 int n,m; 8 int map[200010]; 9 struct T10 {11 int x,step;12 };13 int dfs(T now)14 {queue< T >q;15 T end;16 q.push(now);17 while(!q.empty())18 {19 end=q.front();20 q.pop();21 map[end.x]=1;22 if(end.x==m)23 { return end.step;}24 //如果不是走一步一判断很容易超出内存的25 now.x=end.x+1;//前进一步,存入队列;26 if(end.x>=0 && end.x<=100000 && map[now.x]==0)27 {28 now.step=end.step+1;29 map[now.x]==1;30 q.push(now);31 }32 now.x=end.x-1;//后退一步33 if(end.x>=0 && end.x<=100000 && map[now.x]==0)34 {35 now.step=end.step+1;36 map[now.x]==1;37 q.push(now);38 }39 now.x=end.x*2;//前进2倍的位置40 if(end.x>=0 && end.x<=100000 && map[now.x]==0)41 {42 now.step=end.step+1;43 map[now.x]==1;44 q.push(now);45 }46 }47 return 0;48 }49 int main()50 {51 T now;52 while(cin>>n>>m)53 {54 if(n>=m)//如果n大于m则只能后退了;55 {56 cout< <